Select Currency
Translate this page

THE INHIBITION EFFICIENCY OF LASIENTHERA AFRICANUM AS A NATURAL CORROSION INHIBITOR

Format: MS WORD  |  Chapter: 1-5  |  Pages: 65  |  3729 Users found this project useful  |  Price NGN5,000

  DOWNLOAD THE FULL PROJECT

THE INHIBITION EFFICIENCY OF LASIENTHERA AFRICANUM AS A NATURAL CORROSION INHIBITOR

 

CHAPTER ONE

INTRODUCTION

1.1   BACKGROUND OF THE STUDY

Corrosion is a serious problem in this modern age of technological advancement. This accounts for a lot of economic losses and irreversible structural damage. The cost of corrosion failures annually for any nation is difficult to estimate per annum, but it has been stated that the wastage of material resources by corrosion ranks third after war and disease (Olugbenga et al.2011). Efforts have been made to restrain the destructive effects of corrosion using several preventive measures (Loto et al. 1989, Popoola et al.2011 and Davis et al. 2001). The effects of corrosion in our daily lives can be direct by affecting the useful service lives of our possessions, and indirect, in that producers and suppliers of goods and services incur corrosion costs, which they pass on to consumers. At home, corrosion is readily recognized on automobile body panels, charcoal grills, outdoor furniture, and metal tools (Denny et al. 1996).  The corrosion of steel reinforcing bars in concrete usually proceeds out of sight and suddenly results in failure of a section of bridges or buildings.

Virtually all metals will corrode to some extent; the fossil–fuel boilers and fossil-fuel fired power generators equipment experience corrosion problems in such component as steam generator and water walls surrounding the furnace (Natarajanf & Sivan, 2003). Perhaps most dangerous of all is corrosion that occurs in major industrial plants, such as electrical power plants or chemical However, the consequences of corrosion are economic and could lead to:

•  Replacement of corroded equipment.

•  Overdesign to allow for corrosion.

•  Preventive maintenance, for example, painting.

•  Shutdown of equipment due to corrosion failure.

•  Contamination of a product.

•  Loss of efficiency—such as when overdesign and corrosion products decrease the heattransfer rate in heat exchangers.

•  Loss of valuable product, for example, from a container that has corroded through.

•  Inability to use otherwise desirable materials.

•  Damage of equipment adjacent to that in which corrosion failure occurs.

Corrosion affects most of the industrial sector and may cost billions of dollars each year for prevention and replacement maintenance. Thus, the modern world has made investigations to overcome this problem by conducting enrichment studies of corrosion inhibitors. Corrosion inhibitors will reduce the rate of either anodic oxidation or cathodic reduction or both. This will give us anodic, cathodic or a mixed type of inhibition. In an attempt to find corrosion inhibitors that are environmentally safe and readily available, there has been a growing trend in the use of biological substrate such as leaves or plant extracts as corrosion inhibitors for metals in acid cleaning processes.

As a result of increasing awareness on environmentally friendly practices for sustainable development, the demand for non-toxic inhibitors to replace toxic ones has increased tremendously. Thus, in recent years, several plant extracts have been investigated for the inhibition of acid corrosion of metals. This is because plants contain naturally synthesized chemical compounds that are biodegradable, environmentally acceptable, inexpensive, readily available and renewable source of materials.

Corrosion is not only dangerous, but also costly, with annual damages in the billions of dollars! If this is difficult to believe, consider some of the direct and indirect effects of corrosion which contribute to these costs: Not only that the economic costs are frightening, there is also potential loss of life and damage to the environment problems, which can have widespread effects upon modern industrial businesses. It is essential, therefore, for operators of industrial process plants to have a program for controlling corrosion.

1.1   Literature Review

Corrosion may be defined as a destructive phenomenon, chemical or electrochemical, which can attack any metal or alloy through reaction by the surrounding environment and in extreme cases may cause structural failure. The corrosion occurs because of the natural tendency for most metals to return to their natural state (reverse of metallurgy); e.g., iron in the presence of moist air will revert to its natural state, iron oxide.

Corrosion could be basically carried by water intrusion and some environmental factors. Water intrusion is the principal cause of corrosion problems encountered in the field use of equipment. Water can enter an enclosure by free entry, capillary action, or condensation. With these three modes of water entry acting and with the subsequent confinement of water, it is almost certain that any enclosure will be susceptible to water intrusion. At normal atmospheric temperatures the moisture in the air is enough to start corrosive action. Oxygen is essential for corrosion to occur in water at ambient temperatures. Other factors that affect the tendency of a metal to corrode are acidity or alkalinity of the conductive medium (pH factor), stability of the corrosion products, biological organisms (particularly anaerobic bacteria), Variation in composition of the corrosive medium and temperature.

1.2   Mechanism of Corrosion

In nature, metals are not found in Free State due to their reactivity. Metals are generally in high energy state because some energy is added during their manufacturing process from the ores. Low energy - state ores are more stable than the high energy – state metals. As a result of this uphill thermodynamic struggle, the metals have a strong driving force to release energy and  go back to their original form. Hence the metals revert to their parent state or ore under a suitable corrosive environment. The electrochemical process involved in corrosion by nature is opposite to the extractive metallurgy involved in manufacturing of the metals. Therefore, corrosion is sometimes considered as the reverse process of extractive metallurgy.

According to electrochemistry, the corrosion reaction can be considered as taking place by two simultaneous reactions:

The oxidation of a metal at an anode (a corroded end releasing electrons) and the reduction of a substance at a cathode (a protected end receiving electrons). In order for the reaction to occur, the following conditions must exist:

•          Two areas on the structure must differ in electrical potential.

•          Those areas called anodes and cathodes must be electrically interconnected.

•          Those areas must be exposed to a common electrolyte.

•          An electric path through the metal or between metals be available to permit electron flow. When these conditions exist, a corrosion cell is formed in which the cathode remains passive while the anode deteriorates by corrosion. As a result of this process, electric current flows through the interconnection between cathode and anode. The cathode area is protected from corrosion damage at the expense of the metal, which is consumed at the anode. The amount of metal lost is directly proportional to the flow of direct current.  Mild steel is lost at approximately 20  pounds for each ampere flowing for a year. (Thomas, 1994).

At the anode, metals are oxidized and the electrons are liberated from the metal to form positive  metal ions. The liberated electrons dissolve into the electrolyte, and deposition is formed on the cathodic metal. Anode corrodes while the cathode remains intact.

1.3 Forms of corrosion damage

1.3.1 Uniform or thinning corrosion

In this form of corrosion attack, the entire surface of the metal is corroded, and the metal thickness reduced by a uniform amount. This would occur with a homogenous metal when no difference in potential existed between any points on the surface.

1.3.2 Fretting corrosion  

Fretting corrosion occurs when two or more parts rub against each other. The rubbing action removes the corrosion products and exposes new metal to the electrolyte.

1.3.3 Pitting corrosion

This is the most common type of attack that occurs with heterogeneous metals such as steels and other alloys. It is a localized attack, where the rate of corrosion is greater at some areas than at others. This is caused by differences in potential between different points on the metal surface

1.3.4 Galvanic corrosion

Galvanic corrosion occurs where two different metals or alloys come in contact. The severity of galvanic corrosion depends upon the difference in potential between the two metals, and the relative size of the cathode and anode areas

1.3.5 Intergranular corrosion  

Corrosion occurs at the grain boundaries due to a difference in potential between the anodic grain boundaries and the cathodic grains. "Sensitized" stainless steels, where carbides have been precipitated in the grain boundaries during improper heat treatment or in the heat-affected zone of a weld, are particularly susceptible to intergranular corrosion.

1.3.6 Erosion corrosion  

Erosion is the removal of metal by the movement of fluids against the surface. The combination of erosion and corrosion can provide a severe rate of corrosion.

1.3.7 Crevice corrosion  

Crevice corrosion occurs when there is a difference in ion, or oxygen, concentration between the metal and its surroundings. Oxygen starvation in an electrolyte at the bottom of a sharp V-section will set up an anodic site in the metal that then corrodes rapidly.

1.4 Methods of Corrosion Protection  

1.4.1 Application of Protective Coatings  

Metallic structures can be protected from corrosion in many ways. A common method involves the application of protective coatings made from paints, plastics or films of noble metals on the structure itself (e.g., the coating on tin cans). These coatings form an impervious barrier between the metal and the oxidant but are only effective when the coating completely covers the structure. Flaws in the coating have been found to produce accelerated corrosion of the metal. 

1.4.2 Cathodic Protection 

Cathodic protection using an impressed current derived from an external power supply is a related form of protection in which the metal is forced to be the cathode in an electrochemical cell. For example, most cars now use the negative terminal on their batteries as the ground. Besides being a convenient way to carry electricity, this process shifts the electrical potential of the chassis of the car, thereby reducing (somewhat) its tendency to rust.

  DOWNLOAD THE FULL PROJECT

THE INHIBITION EFFICIENCY OF LASIENTHERA AFRICANUM AS A NATURAL CORROSION INHIBITOR

Not The Topic You Are Looking For?



For Quick Help Chat with Us Now!

+234 813 292 6373

+233 55 397 8005


HOW TO GET THE COMPLETE PROJECT ON THE INHIBITION EFFICIENCY OF LASIENTHERA AFRICANUM AS A NATURAL CORROSION INHIBITOR INSTANTLY

  • Click on the Download Button above.
  • Select any option to get the complete project immediately.
  • Chat with Our Instant Help Desk on +234 813 292 6373 for further assistance.
  • All projects on our website are well researched by professionals with high level of professionalism.

Here's what our amazing customers are saying

Azeez Abiodun
Moshood Abiola polytechnic
I actually googled and saw about iproject master, copied the number and contacted them through WhatsApp to ask for the availability of the material and to my luck they have it. So there was a delay with the project due to the covid19 pandemic. I was really scared before making the payment cause I’ve been scammed twice, they attended so well to me and that made me trust the process and made the payment and provided them with proof, I got my material in less than 10minutes
Very Good
Adam Alhassan Yakubu
UDS
Excellent work and delivery , I promise to share my testimonies everyone in need of this kind of work. You're the best
Excellent
Abdulrazak Bello Marsha
Usman Dan fodio University
It was quite a better guide for project and paper presentation purpoting. Many thanks.
Average
Stancy M
Abia State University, Uturu
I did not see my project topic on your website so I decided to call your customer care number, the attention I got was epic! I got help from the beginning to the end of my project in just 3 days, they even taught me how to defend my project and I got a 'B' at the end. Thank you so much iprojectmaster, infact, I owe my graduating well today to you guys...
Excellent
Musa From Ahmadu Bello University
Thank you iprojectmaster for saving my life, please keep it up and may God continue to bless you people.
Excellent
Gbadamosi Solomon Oluwabunmi
Lasu
Swift delivery within 9 minutes of payment. Thank you project master
Excellent
Ibrahim Muhammad Muhammad
Usmanu danfodiyo university, sokoto
It's a site that give researcher student's to gain access work,easier,affordable and understandable. I appreciate the iproject master teams for making my project work fast and available .I will surely,recommend this site to my friends.thanks a lot..!
Excellent
Abubakar Iliyasu Hashim
Federal college of education pankshin affiliated to university of jos
I am highly impressed with your unquantifiable efforts for the leaners, more grace to your elbow.I will inform my colleagues about your website.
Very Good
Abdul Mateen Iddrisu
UDS
At first I taught is a site full of fraudsters until I saw my project in my Gmail after my payment.. THANK YOU IPROJECTMASTER and May God the almighty bless u guys abundantly
Excellent
Oluchi From Michael Opara University
If you are a student and you have not used iprojectmaster materials, you are missing big time! iprojectmaster is the BEST
Excellent

FREQUENTLY ASKED QUESTIONS

How do I get this complete project on THE INHIBITION EFFICIENCY OF LASIENTHERA AFRICANUM AS A NATURAL CORROSION INHIBITOR?

Simply click on the Download button above and follow the procedure stated.

I have a fresh topic that is not on your website. How do I go about it?

How fast can I get this complete project on THE INHIBITION EFFICIENCY OF LASIENTHERA AFRICANUM AS A NATURAL CORROSION INHIBITOR?

Within 15 minutes if you want this exact project topic without adjustment

Is it a complete research project or just materials?

It is a Complete Research Project i.e Chapters 1-5, Abstract, Table of Contents, Full References, Questionnaires / Secondary Data

What if I want to change the case study for THE INHIBITION EFFICIENCY OF LASIENTHERA AFRICANUM AS A NATURAL CORROSION INHIBITOR, What do i do?

Chat with Our Instant Help Desk Now: +234 813 292 6373 and you will be responded to immediately

How will I get my complete project?

Your Complete Project Material will be sent to your Email Address in Ms Word document format

Can I get my Complete Project through WhatsApp?

Yes! We can send your Complete Research Project to your WhatsApp Number

What if my Project Supervisor made some changes to a topic i picked from your website?

Call Our Instant Help Desk Now: +234 813 292 6373 and you will be responded to immediately

Do you assist students with Assignment and Project Proposal?

Yes! Call Our Instant Help Desk Now: +234 813 292 6373 and you will be responded to immediately

What if i do not have any project topic idea at all?

Smiles! We've Got You Covered. Chat with us on WhatsApp Now to Get Instant Help: +234 813 292 6373

How can i trust this site?

We are well aware of fraudulent activities that have been happening on the internet. It is regrettable, but hopefully declining. However, we wish to reinstate to our esteemed clients that we are genuine and duly registered with the Corporate Affairs Commission as "PRIMEDGE TECHNOLOGY". This site runs on Secure Sockets Layer (SSL), therefore all transactions on this site are HIGHLY secure and safe!