Select Currency
Translate this page


Format: MS WORD  |  Chapter: 1-5  |  Pages: 55  |  1119 Users found this project useful  |  Price NGN3,000






General Introduction

Clay is a naturally occurring material composed primarily of fine-grained minerals, which show plasticity through a variable range of water content, and which can be hardened when dried or fired. Clay deposits are mostly composed of clay minerals (phyllosilicate minerals) and variable amounts of water trapped in the mineral structure by polar attraction. Organic materials which do not impart plasticity may also be a part of clay deposits.   Clay is a widely distributed, abundant mineral resource of major industrial importance for an enormous variety of uses (Ampian, 1985). In both value and amount of annual production, it is one of the leading minerals worldwide. In common with many geological terms, the term “clay” is ambiguous and has multiple meanings: a group of fine-grained minerals which show plasticity through a variable range of water content, and which can be hardened when dried or fired i.e., the clay minerals; a particle size (smaller than silt); and a type of rock i.e., a sedimentary deposit of fine-grained material usually composed largely of clay minerals (Patterson & Murray, 1983; Bates & Jackson, 1987). Clays find wide range of applications, in various areas of science, due to their natural abundance and the propensity with which they can be chemically and physically modified to suit practical technological needs (Xi et al., 2005).

Clays are distinguished from other fine-grained soils by various differences in composition. Silts, which are fine grained soils which do not include clay minerals tend to have large particle sizes than clays but there is some overlap in both particle size and other physical properties, and there are many naturally occurring deposits which include both silts and clays. The distinction between silts and clay varies by discipline.Geologists and soil scientists usually consider the separation to occur at a particle size of 2µm (clays being finer than silts), sedimentologists often use 4-5µm, and colloid chemists use 1um. Geotechnical engineers distinguish between silts and clays based on the plasticity properties of the soil, ISO 14688 grades; clay particles as being smaller than 0.063mm and silts one larger.

There are three or four main groups of clays; kaolinite, montmorillonite-smecite, illite and chlorite. Chlorites are not always considered clay, sometimes being classified as a separate group within the phyllosilicates. There are approximately thirty different types of “pure” clays in these categories but most “natural” clays are mixtures of these different types along with other weathered minerals (Lagaly, 1984).

1.2Clay Minerals

Clay minerals likely are the most utilized minerals not just as the soils that grow plants for foods and garment, but a great range of applications, including oil absorbants, iron casting, animal feeds, pottery, china, pharmaceuticals, drilling fluids, waste water treatment, food preparation, paint e.t.c.

Clay minerals are hydrous aluminium phyllosilicates, sometimes with variable amounts of iron, magnesium, alkali metals, alkaline earths, and other cations. Clays form flat hexagonal sheets similar to themicas. Clay minerals are common weathering products (including weathering of feldspar) and low temperature hydrothermal alteration products. Clay minerals are very common in fine grained sedimentary rocks such as shale, mudstone, and siltstone and in fine grained metamorphic slate and phyllite. Clay minerals are usually (but not necessarily) ultrafine-grained (normally considered to be less than 2µm in size on standard particle size classifications) and so may require special analytical techniques for their identification/study. These include x-ray diffraction, electron diffraction methods, various spectroscopic methods such as Mössbauer spectroscopy, infrared spectroscopy, and SEM-EDX or automated mineralogysolutions. These methods can be enlarged by polarized light microscopy, a traditional technique establishing fundamental occurrences or petrologic relationships.

Clay minerals can be classified as 1:1 or 2:1clays; this originates from the fact that they are fundamentally built of tetrahedral silicate sheets and octahedral hydroxide sheets, as described in Figure 1 below. A 1:1 clay would consist of one tetrahedral sheet and one octahedral sheet, for example, kaolinite and serpentine. A2:1 clay consists of an octahedral sheet sandwiched between two tetrahedral sheets, for example, talc, vermiculite and montmorillonite.

Clay minerals include the following groups:

·  Kaolin group which includes the minerals kaolinite, dickite, halloysite, and nacrite (polymorphs of Al2Si2O5(OH)4). Some sources include the kaolinite-serpentine group due to structural similarities (Bailey 1980).

· Smectite group which includes dioctahedral smectites such as montmorillonite and nontronite and trioctahedral smectites, for example,saponite.

·   Illite group which includes the clay-micas. Illite is the only common mineral.

·  Chlorite group includes a wide variety of similar minerals with considerable chemical variation.

Other 2:1 clay types exist such as sepiolite or attapulgite, which areclays with long water channels internal to their structure.

Typically, the structural formula for kaolinite is Al4Si4O10(OH)8 and the theoretical chemical composition given in Table 1.

Table 1: Theoretical Chemical Composition of Kaolinite (J.Fafardet al; 2012)


Chemical Compound


Percentage Composition (%)














Mixed layer clay variations exist for most of the above groups. Ordering is described as random or regular ordering, and is further described by the term reichweite, which is German for range or reach.

1.1.1    Structureof Clay Minerals

Like all phyllosilicates, clay minerals are characterized by two-dimensional sheets of corner sharing SiO4tetrahedral and/or AlO4 octahedral. The sheet units have the chemical composition (Al,Si)3O4. Each silica tetrahedron shares 3 of its vertex oxygen atoms with other tetrahedral forming a hexagonal array in two-dimensions. The fourth vertex is not shared with another tetrahedron and all of the tetrahedral "point" in the same direction; that is, all of the unshared vertices are on the same side of the sheet. In clays, the tetrahedral sheets are always bonded to octahedral sheets formed from small cations, such as aluminum or magnesium, and coordinated by six oxygen atoms. The unshared vertex from the tetrahedral sheet also forms part of one side of the octahedral sheet, but an additional oxygen atom is located above the gap in the tetrahedral sheet at the center of the six tetrahedral. This oxygen atom is bonded to a hydrogen atom forming an OH group in the clay structure. Clays can be categorized depending on the way that tetrahedral and octahedral sheets are packaged into layers.

                              Fig 1. Structure of kaolinite( Papke,Keith1970)

1.1.2       Cation Exchange Capacity (CEC)

The ion-exchange capability of clay minerals, in particular, kaolinites, influences their unique physical properties, such as the cation retention and diffusion processes of charged and uncharged molecules. These processes influence cation and molecule migration through clay-rich barriers in nature. The numerical value of this property is described by the cation exchange capacity (CEC). Methods for determining CEC involve the complete exchange of the naturally occurring cations by a cationic species, such as ammonium, K, Na, methylene blue, Co(III) hexamine complex (RadmyandOrsini, 1976), Ba, Ag thiourea complex, and Cu(II) ethylenediamine complex. Exchange with organic cations, such as alkylammonium, provides an indirect method for the determination of CEC.

CEC may be defined as the quality of exchangeable cations expressed in milliequivalents per 100g of ignited weight of clay (Newman 1987).The cation exchange capacity (CEC) of a clay is a measure of the quantity of negatively charged sites on clay surfaces that can retain positively charged ions (cations) such as calcium (Ca2+), magnesium (Mg2+), and potassium (K+), by electrostatic forces. Cations retained electrostatically are easily exchangeable with cations in the clay solution, so clay with a higher CEC has a greater capacity to maintain adequate quantities of Ca2+, Mg2+ and K+ than clay with a low CEC. It is also a very important tool in the preparation of organoclay. CEC is a good indicator of clay quality and productivity. It is normally expressed in one of two numerically equivalent sets of units: meq/100 g (milliequivalents of charge per 100 g of dry clay) or cmolc/kg (centimoles of charge per kilogram of dry clay).Because of the differing methods to estimate CEC, it is important to know the intended use of the data. For clay classification purposes, clay’s CEC is often measured at a standard pH value. Examples are the ammonium acetate method of Schollenberger and Dreibelbis (1930) which is buffered at pH 7, and the barium chloride-triethanolamine method of Mehlich (1938) which is buffered at pH 8.2 (Rhoades,1982.) . This procedure involves determination of the expansion of the layers and calculations involve charge density (Oliset et al., 1990; Lagaly, 1981). Depending on the method utilized, the excess of the exchanged cations is removed in a subsequent step and the amount retained on the clay is determined. However, the determined CEC values are dependent on the method used. Although time consuming, the exchange with ammonium acetate is the standard method for CEC determination (Mackenzie, 1951).

To obtain complete ion exchange and to obtain reliable values of CEC, either a high surplus of an exchanging cation or a cation with a high affinity for the clay mineral must be employed.

1.2       Organoclays

Surface modifications of clay minerals have received attention because it allows the creation of new materials and new applications. The main focus of surface modification of clays is materials science, because organoclays are essential to develop polymer nanocomposites. Nanocomposites constitute one of the most developed areas of nanotechnology. It is reportedTheng (1974), that the adsorption capacity of organoclays is improved over and above untreated clays for the removal of various organic contaminants. Besides, organoclays are more cost effective compared with other adsorbents, such as activated carbon and have been shown to be potentially effective for the uptake of water contaminants in aqueous solution. 

Clay minerals have been found to be ineffective adsorbents in removing organic compounds because the hydration of inorganic cations on the surface of the clay makes them hydrophilic (Y. Xi et al; 2011). However, with the use of quaternary ammonium compounds (QACs), the surface properties of clay minerals have been greatly improved by replacing the natural inorganic interlayer cations with the organic cations present in the QACs (A.R. McLauchlin and N.L. Thomas;2008) to produce organoclays that are highly effective as adsorbents used in organic contaminant attenuation. The intercalation of a cationic surfactant between the clay layers renders the clay mineral hydrophobic at the surface while also increasing its wettability and thermodynamically favorable interactions with organic molecules (Y. Xi et al; 2011).

The studies on the interaction between clay minerals and organic compounds have been conducted from the beginning of the 20th century increasing in number and in topics. The research of intercalation of organic molecules into the interlayer space of clay minerals started in the 1920s, after the introduction of X-ray diffraction in 1913 (Merinska et al., 2002). One of the earliest papers was from Smith in 1934 on interactions, Gieseking (1939) found methylene blue to be very effective in replacing interlayer cations. These results suggested the possibility of using ammonium ions of the NHR3+, NH2R2 +, NHR3+, and NR4+ types to throw more light on the mechanism of cation exchange in clay minerals. Kaolinites, beidellite and nontronite types of clay minerals were treated with solutions of the hydrochlorides or hydroiodides of the various amines. The clay minerals adsorbed the organic ions, giving rise to basal spacing greater than those of the same clay minerals saturated with smaller cations such as calcium or hydrogen.

McEwan (1944) reported that the identification of montmorillonite was notoriously difficult. For this reason, he developed an unambiguous method based on the intercalation of glycerol into the interlayer space of the clay mineral. He observed that when montmorillonite was treated with glycerol, a very sharp and intense first-order basal reflexion was obtained at 1.77 nm, and the method is very suitable for identification.

Bradley (1945) studied the molecular association between montmorillonite and organic liquids aliphatic di- and polyamines and glycols, polyglycols and polyglycol ethers. Analysis of the complexes established that the amines are active in base exchange, while glycerol and glycol enter into the interlayer space without displacing cations.

Studies of interactions between clay minerals and organic compounds have been presented, among others, by Theng (1974), Lagaly (1984), and Yariv and Cross (2002). The countless clay–organic complexes of great industrial importance are the organoclays prepared from smectites and quaternary ammonium salts.

Hauser (1950) in his patent (US 2,531,427) described procedures for obtaining organoclays that swell and disperse forming gels in organic liquids in the same way as sodium smectites usually swell in water. Jordan first developed a research group on those organophilic clays (Beneke and Lagaly, 2002) and published important papers on their properties (Jordan, 1949; Jordan et al., 1950; Jordan, 1954). Jordan (1949) investigated some of the factors involved with the swelling of organoclays and the extent of the conversion of the clay from hydrophilic to hydrophobic.

Organophilic kaolinites were prepared by the reaction of kaolinite with various aliphatic ammonium salts. The swelling of the organoclays was studied in several organic liquids and liquid mixtures. Jordan concluded that the degree of solvation depends on at least three factors:

i.  The extent of the surface coating of the clay particles by organic matter;

ii. The degree of saturation of the exchange capacity of the clay mineral by organic cations; and

iii. The nature of the organic liquid.

In 1950 Jordan et al. investigated the formation of gels of organoclays in several organic liquids and liquid mixtures and an optimum gelation occurred. Intercalation of organic guest species into kaolinite is a way of constructing ordered inorganic–organic assemblies with unique microstructures controlled by host–guest and guest–guest interactions (Kakegawa and Ogawa, 2002). Currently, an important application of the organoclays is in the polymer nanocomposites.

Organoclays are the most dominant commercial nanomaterial to prepare polymer nanocomposites, accounting for nearly 70% of the volume used (Markarian, 2005). Proper organophilization procedure is a key step for successful exfoliation of clay minerals particles in the polymeric matrix. The organophilic feature reduces the energy of the clay mineral and makes it more compatible with the organic polymers. The addition of organoclays into polymeric matrices improves mechanical, physical (thermal and barrier) and chemical properties of the matrices and reduces cost in some cases. Typically, organoclays replace talc or glass fillers at a 3:1 ratio. For example, 5% of an organoclay can replace 15–50% of a filler like calcium carbonate reducing cost and improving mechanical properties (Markarian, 2005). Organoclays also have been used in other applications. These applications include adsorbents, rheological control agents, paints, grease, cosmetics, personal care products, oil well drilling fluids, etc. (Santos,1989; Beall and Goss, 2004; Xi et al., 2005; Araújoet al., 2005). These clay minerals swell in water into a manner similar to smectites, and have interlayer charge densities higher than that of smectites. Unlike natural clay minerals, they have high crystallinity, controllable composition and fewer impurities. For this reasons, the use of such micas as host materials is expected to be more advantageous than the use of natural clay minerals. However, there are few studies about the chemical intercalation of hectorite, sepiolite and synthetic fluoro-micas.

1.2.1    Preparation of organoclay


Not What You Are Looking For?

For QUICK Help Call Us Now!

+234 813 2926 373

+234 701 5050 881

Here's what our amazing customers are saying

Emmanuel Essential
Kogi state University
I actually took the risk,you know first time stuff But i was suprised i received as requested. I love you guys 🌟 🌟 🌟 🌟
Very Good
Azeez Abiodun
Moshood Abiola polytechnic
I actually googled and saw about iproject master, copied the number and contacted them through WhatsApp to ask for the availability of the material and to my luck they have it. So there was a delay with the project due to the covid19 pandemic. I was really scared before making the payment cause I’ve been scammed twice, they attended so well to me and that made me trust the process and made the payment and provided them with proof, I got my material in less than 10minutes
Very Good
Gbadamosi Solomon Oluwabunmi
Swift delivery within 9 minutes of payment. Thank you project master
Ajayi Crowther University, Oyo
I was scared at first when I saw your website but I decided to risk my last 3k and surprisingly I got my complete project in my email box instantly. This is so nice!!!
Ahmadu Bello University
I wish I knew you guys when I wrote my first degree project, it took so much time and effort then. Now, with just a click of a button, I got my complete project in less than 15 minutes. You guys are too amazing!
Temitayo Ayodele
Obafemi Awolowo University
My friend told me about iprojectmaster website, I doubted her until I saw her download her full project instantly, I tried mine too and got it instantly, right now, am telling everyone in my school about, no one has to suffer any more writing their project. Thank you for making life easy for me and my fellow students... Keep up the good work
Very Good
Stancy M
Abia State University, Uturu
I did not see my project topic on your website so I decided to call your customer care number, the attention I got was epic! I got help from the beginning to the end of my project in just 3 days, they even taught me how to defend my project and I got a 'B' at the end. Thank you so much iprojectmaster, infact, I owe my graduating well today to you guys...
Ibrahim Muhammad Muhammad
Usmanu danfodiyo university, sokoto
It's a site that give researcher student's to gain access work,easier,affordable and understandable. I appreciate the iproject master teams for making my project work fast and available .I will surely,recommend this site to my friends.thanks a lot..!
Dau Mohammed Kabiru
Kaduna State College of Education Gidan Waya
This is my first time..Your service is superb. But because I was pressed for time, I became jittery when I did not receive feedbackd. I will do more business with you and I will recommend you to my friends. Thank you.
Very Good
Joseph M. Yohanna
Thanks a lot, am really grateful and will surely tell my friends about your website.


  • Select 3 Project Topics of your choice from your Department.
  • Submit the 3 topics to your Supervisor for Approval.
  • Call Our Instant Help Desk on 0813-292-6373 and Get Your Complete Project Material Instantly.
  • All project materials on this website are well researched by professionals with high level of professionalism.


How do i choose a Project Topic?

Look for your department and select any topic of your choice

I have a fresh topic that is not on your website. How do I go about it?

How fast can i get a complete project from your website?

Within 15 minutes if the exact project topic is on our website

Is it a complete research project or just materials?

It is a Complete Research Project i.e Chapters 1-5, Abstract, Table of Contents, Full References, Questionnaires / Secondary Data

One of your topics suites my project, but the case study is different. What do i do?

Call Our Instant Help Desk Now: (+234) 813-292-6373 and you will be responded to immediately

How do i get my complete project?

Your Complete Project Material will be sent to your Email Address in Ms Word document format

Can I get my Complete Project through WhatsApp?

Yes! We can send your Complete Research Project to your WhatsApp Number

What if my Project Supervisor made some changes to a topic i picked from your website?

Call Our Instant Help Desk Now: (+234) 813-292-6373 and you will be responded to immediately

Do you assist students with Assignment and Project Proposal?

Yes! Call Our Instant Help Desk Now: (+234) 813-292-6373 and you will be responded to immediately

What if i do not have any project topic idea at all?

Smiles! We've Got You Covered. Chat with us on WhatsApp Now to Get Instant Help: (+234) 813-292-6373

How can i trust this site?

We are well aware of fraudulent activities that have been happening on the internet. It is regrettable, but hopefully declining. However, we wish to reinstate to our esteemed clients that we are genuine and duly registered with the Corporate Affairs Commission as "PRIMEDGE TECHNOLOGY". This site runs on Secure Sockets Layer (SSL), therefore all transactions on this site are HIGHLY secure and safe!