NATURAL FLOW AND ARTIFICIAL LIFT FOR A SOLUTION GAS DRIVE RESERVOIR

Format: MS WORD  |  Chapters: 1-5  |  Pages: 75  |  244 Users found this project useful  |  Price ₦3,000

GET THE COMPLETE PROJECT

NATURAL FLOW AND ARTIFICIAL LIFT FOR A SOLUTION GAS DRIVE RESERVOIR

 

ABSTRACT

Solution gas drive reservoirs are characterized by rapid and continuous decline of reservoir pressure. This rapid and continuous decline of reservoir pressure causes direct decline of reservoir performance at early stages of the life of the reservoir. The principal source of energy which is gas liberation from the crude oil and the subsequent expansion of the solution gas as the reservoir pressure is reduced are inadequate to produce such reservoirs to their full capacities. Ultimate oil recovery from natural flow of a solution - gas drive reservoir makes it one of the least efficient primary recovery mechanisms. This leaves a substantial amount of remaining oil residing in the reservoir which must be produced.

Artificial lift technologies such as continuous gas lift, gas lift with velocity strings and positive displacement pumping is therefore employed at later phases of the reservoir’s life to increase the ultimate recovery which is what this project sort to do. Synthetic data based on material balance for a solution – gas drive reservoir is analyzed to predict its primary oil recovery based on which gas lifting, velocity strings technology and positive displacement pumping are suggested to be employed with respect to time at different stages of reservoir’s life.

Chapter One

1.0 Introduction

1.1 Problem Statement

Solution gas drive also known as Dissolved gas drive or Internal gas drive reservoirs are characterised by a rapid and continuous decline of reservoir pressure. This reservoir pressure behaviour is attributed to the fact that no extraneous fluids or gas caps are available to provide a replacement of the gas and oil withdrawals (Tarek, 2001). This rapid and continuous decline of reservoir pressure causes a direct decline of reservoir performance at early stages of the life of the reservoir. Moreover, the principal source of energy which is gas liberation from the crude oil and the subsequent expansion of the solution gas as the reservoir pressure is reduced are inadequate to produce such reservoirs to their full capacities (Tarek, 2001). Ultimate oil recovery from natural flow of a solution gas drive reservoir (less than 5% to about 30%) makes it one of the least efficient primary recovery mechanisms (Tarek, 2001). The low recovery from this type of reservoir suggests that large quantities of oil remain in the reservoir and, therefore, solution gas drive reservoirs are considered the best candidates for secondary recovery applications.

Artificial lift technologies such as continuous gas lift, gas lift with velocity strings and positive displacement pumping method is therefore employed at later phases of the reservoir in order to increase the ultimate recovery. The main challenge is to know when to change existing production mechanism to a new one for optimum recovery. A production design has therefore been made in an attempt to solving this problem with respect to constraints such as maximum production rate, maximum drawdown, and available gas lift.

The flowing bottom-hole pressure required to lift the fluids up to the surface may be influenced by size of the tubing string (Lyons, 1996) and for that matter the time when tubing strings should be replaced as a function of cumulative production is necessary.

1.2 Method of Conducting the Project

Designing the natural flow and artificial lift tubing strings for the whole life of a well forms the tasks of this project. This is based on certain constraints such as maximum production rate, maximum drawdown, and available gas lift and horsepower requirement. Synthetic reservoir performance based on a material balance is the main data source for this project. A forecast of the production of oil as well as the time when tubing strings should be replaced as a function of the cumulative production is proposed.

1.3 Objectives

The objectives of this project are to:

·         Design natural flow and artificial lift tubing strings for the whole life of a well.

·         Forecast the production of oil as well as the time when tubing strings should be replaced as a function of both cumulative production and time.

1.4 Outline of this Project

The project consists of five (5) chapters. Chapter 1 defines the problem at hand, the method which the project follows and objectives. Chapter 2 presents a literature review of the topic as well as the technical terms that make up the topic. Chapter 3 introduces a thorough review of the material balance equation, methods of predicting primary oil recovery with emphasis on Muskat’s method which has been employed in this report. Application of the Muskat’s method is illustrated with a synthetic reservoir data. Chapter 4 comes up with the natural flow design as well as the artificial lift tubing strings with respect to the set constraints. 

GET THE COMPLETE PROJECT

Not What You Are Looking For?



For QUICK Help Call Us Now!

+234 813 292 6373


Here's what our amazing customers are saying

JONNAH EHIS
Ajayi Crowther University, Oyo
I was scared at first when I saw your website but I decided to risk my last 3k and surprisingly I got my complete project in my email box instantly. This is so nice!!!
Excellent
MATTHEW NGBEDE
Ahmadu Bello University
I wish I knew you guys when I wrote my first degree project, it took so much time and effort then. Now, with just a click of a button, I got my complete project in less than 15 minutes. You guys are too amazing!
Excellent
Temitayo Ayodele
Obafemi Awolowo University
My friend told me about iprojectmaster website, I doubted her until I saw her download her full project instantly, I tried mine too and got it instantly, right now, am telling everyone in my school about iprojectmaster.com, no one has to suffer any more writing their project. Thank you for making life easy for me and my fellow students... Keep up the good work
Very Good
Stancy M
Abia State University, Uturu
I did not see my project topic on your website so I decided to call your customer care number, the attention I got was epic! I got help from the beginning to the end of my project in just 3 days, they even taught me how to defend my project and I got a 'B' at the end. Thank you so much iprojectmaster, infact, I owe my graduating well today to you guys...
Excellent
Ibrahim Muhammad Muhammad
Usmanu danfodiyo university, sokoto
It's a site that give researcher student's to gain access work,easier,affordable and understandable. I appreciate the iproject master teams for making my project work fast and available .I will surely,recommend this site to my friends.thanks a lot..!
Excellent
Dau Mohammed Kabiru
Kaduna State College of Education Gidan Waya
This is my first time..Your service is superb. But because I was pressed for time, I became jittery when I did not receive feedbackd. I will do more business with you and I will recommend you to my friends. Thank you.
Very Good
Joseph M. Yohanna
Thanks a lot, am really grateful and will surely tell my friends about your website.
Excellent
Merry From BSU
I am now a graduate because of iprojectmaster.com, God Bless you guys for me.
Excellent
Samuel From Ajayi Crowther University
You guys just made life easier for students. Thanks alot iprojectmaster.com
Excellent
Musa From Ahmadu Bello University
Thank you iprojectmaster for saving my life, please keep it up and may God continue to bless you people.
Excellent