A REVIEW OF THE RHEOLOGICAL EFFECTS OF POWER LAW DRILLING FLUIDS ON CUTTINGS TRANSPORTATION IN NON-VERTICAL BOREHOLES

Format: MS WORD  |  Chapters: 1-5  |  Pages: 75  |  233 Users found this project useful  |  Price ₦3,000

GET THE COMPLETE PROJECT

A REVIEW OF THE RHEOLOGICAL EFFECTS OF POWER LAW DRILLING FLUIDS ON CUTTINGS TRANSPORTATION IN NON-VERTICAL BOREHOLES

 

ABSTRACT

Cuttings transportation during in non-vertical boreholes is necessary for oil and gas wells. Adequate cuttings removal from a well in drilling is critical for cost-effective drilling as high annular cuttings buildup often leads to high risk of stuck pipe, reduced rate of penetration and other impediments to standard drilling and completion procedures.

This study investigates how rheological parameters influence the removal of cuttings in non-vertical boreholes. It contributes to work already done to ensure efficient hole cleaning process. In this study, the rheological parameters examined were the flow index (n), consistency index (K), plastic viscosity (PV), mud yield point (YP), YP/PV ratio, apparent viscosity and effective viscosity. Fifteen mud samples, three annular velocities (3.82, 2.86 and 1.91 ft/sec) and three hole angles (30o, 45o and 70o) were considered. An Excel Spreadsheets program was used to determine the parameters. The results of this study show that, higher annular mud velocities are required for efficient hole cleaning in directional wells than in vertical wells. Increasing values of YP, YP/PV ratio and K promote effective cuttings transport while the value of n should be low. Effective and apparent viscosities also should be high.

CHAPTER ONE

INTRODUCTION

1.1            Problem Definition

Many materials of engineering interest must be handled and transported as slurries or suspensions of insoluble particulate matter. Transportation of cuttings in non-vertical boreholes is of no exception. Almost the same thing occurs whereby the cuttings act as the solids in the drilling fluid. In spite of the many technological advances that have accompanied the drilling of non-vertical boreholes, one significant remaining challenge is effective cuttings transport, particularly in deviated wells.

The transportation of cuttings during drilling has a major influence on the economics of the drilling process. Problems that can occur as a result of inefficient hole cleaning from cuttings include reduced weight on bit, increase risk of pipe stuck and inability to attain the desired reach, reduced rate of penetration (ROP), extra cost because of the need of special additives in the drilling fluid, extra pipe wear, transient hole blockage which can lead to lost circulation and wasted time for wiper tripping. These problems have prompted significant research into cuttings transport during the past 50 years. (Kelessidis, 2004).

Hole cleaning relying on viscous fluids in laminar flow for drilling has proved to be inefficient because of the inability to rotate the string to agitate bedded cuttings. Alternatively, a high fluid flow to induce turbulent flow regime is more effective for hole cleaning, but difficult to achieve because of high friction pressures in the drillpipe. Therefore a bed of cuttings is almost always present in non-vertical boreholes. For laminar flow, the distance that a particle will travel (downstream) before it falls across the annulus clearance can be calculated using Stokes’ law and the local viscosity while flowing can also be calculated. This analysis may be easily applied to optimize mud selection and wiper trips. Applying this model to high low-shear rate-viscosity (LSRV) gels shows that they may perform well inside casing but are expected to do a poor job of hole cleaning in a narrow openhole horizontal annulus without rotation.

For turbulent flow in horizontal wells, the concept of using annular velocity (AV) as a measure of hole cleaning is insufficient. A more complete term called AVRD is introduced, which is the product of the AV and the square root of the hydraulic diameter. This term can be used to compare cuttings transport in turbulent flow in horizontal wells of different cross sectional areas. (Leising et al., 1998).

Rheology which is the study of the flow and deformation of fluids is an important contributing factor to these problems. Rheology describes the relationships between shear rate and shear stress. Pilehvari, Azar, and Sanchez2,16 state that fluid velocities should be maximized to achieve turbulent flow, and mud rheology should be optimized to enhance turbulence in inclined/horizontal sections of the well bore.

The purpose of this study is to investigate how rheological parameters influence the removal of cuttings in non-vertical boreholes.

1.2        Objectives

The objectives of this research are:

·         To present a review of cuttings transport in vertical, directional/horizontal well bores.

·         To provide a critical review of how rheology affects cuttings transportation in non-vertical boreholes.

·         To identify the critical parameters that affect effective removal of cuttings in the drilling of non-vertical boreholes.

·         To propose a methodology for analysing the rheological parameters that affect cuttings transportation in non-vertical boreholes.

GET THE COMPLETE PROJECT

Not What You Are Looking For?



For QUICK Help Call Us Now!

+234 813 292 6373


Here's what our amazing customers are saying

JONNAH EHIS
Ajayi Crowther University, Oyo
I was scared at first when I saw your website but I decided to risk my last 3k and surprisingly I got my complete project in my email box instantly. This is so nice!!!
Excellent
MATTHEW NGBEDE
Ahmadu Bello University
I wish I knew you guys when I wrote my first degree project, it took so much time and effort then. Now, with just a click of a button, I got my complete project in less than 15 minutes. You guys are too amazing!
Excellent
Temitayo Ayodele
Obafemi Awolowo University
My friend told me about iprojectmaster website, I doubted her until I saw her download her full project instantly, I tried mine too and got it instantly, right now, am telling everyone in my school about iprojectmaster.com, no one has to suffer any more writing their project. Thank you for making life easy for me and my fellow students... Keep up the good work
Very Good
Stancy M
Abia State University, Uturu
I did not see my project topic on your website so I decided to call your customer care number, the attention I got was epic! I got help from the beginning to the end of my project in just 3 days, they even taught me how to defend my project and I got a 'B' at the end. Thank you so much iprojectmaster, infact, I owe my graduating well today to you guys...
Excellent
Ibrahim Muhammad Muhammad
Usmanu danfodiyo university, sokoto
It's a site that give researcher student's to gain access work,easier,affordable and understandable. I appreciate the iproject master teams for making my project work fast and available .I will surely,recommend this site to my friends.thanks a lot..!
Excellent
Dau Mohammed Kabiru
Kaduna State College of Education Gidan Waya
This is my first time..Your service is superb. But because I was pressed for time, I became jittery when I did not receive feedbackd. I will do more business with you and I will recommend you to my friends. Thank you.
Very Good
Joseph M. Yohanna
Thanks a lot, am really grateful and will surely tell my friends about your website.
Excellent
Merry From BSU
I am now a graduate because of iprojectmaster.com, God Bless you guys for me.
Excellent
Samuel From Ajayi Crowther University
You guys just made life easier for students. Thanks alot iprojectmaster.com
Excellent
Musa From Ahmadu Bello University
Thank you iprojectmaster for saving my life, please keep it up and may God continue to bless you people.
Excellent